31 research outputs found

    Guidelines for Negotiating Scientific Collaboration

    Get PDF
    Whether it's sharing reagents with a laboratory on the other side of the world or working with the postdoc at the neighboring bench, some simple rules of collaboration might help

    Ta-DAH: Task Driven Automated Hardware Design of Free-Flying Space Robots

    Get PDF
    Space robots will play an integral part in exploring the universe and beyond. A correctly designed space robot will facilitate OOA, satellite servicing and ADR. However, problems arise when trying to design such a system as it is a highly complex multidimensional problem into which there is little research. Current design techniques are slow and specific to terrestrial manipulators. This paper presents a solution to the slow speed of robotic hardware design, and generalizes the technique to free-flying space robots. It presents Ta-DAH Design, an automated design approach that utilises a multi-objective cost function in an iterative and automated pipeline. The design approach leverages prior knowledge and facilitates the faster output of optimal designs. The result is a system that can optimise the size of the base spacecraft, manipulator and some key subsystems for any given task. Presented in this work is the methodology behind Ta-DAH Design and a number optimal space robot designs

    Towards Robotic On-Orbit Assembly of Large Space Telescopes: Mission Architectures, Concepts, and Analyses

    Get PDF
    Over the next two decades, unprecedented astronomy missions could be enabled by space telescopes larger than the James Webb Space Telescope. Commercially, large aperture space-based imaging systems will enable a new generation of Earth Observation missions for both science and surveillance programs. However, launching and operating such large telescopes in the extreme space environment poses practical challenges. One of the key design challenges is that very large mirrors (i.e. apertures larger than 3m) cannot be monolithically manufactured and, instead, a segmented design must be utilized to achieve primary mirror sizes of up to 100m. Even if such large primary mirrors could be made, it is impossible to stow them in the fairings of current and planned launch vehicles, e.g., SpaceX’s Starship reportedly has a 9m fairing diameter. Though deployment of a segmented telescope via a folded-wing design (as done with the James Webb Space Telescope) is one approach to overcoming this volumetric challenge, it is considered unfeasible for large apertures such as the 25m telescope considered in this study. Parallel studies conducted by NASA indicate that robotic on-orbit assembly (OOA) of these observatories offers the possibility, surprisingly, of reduced cost and risk for smaller telescopes rather than deploying them from single launch vehicles but this is not proven. Thus, OOA of large aperture astronomical and Earth Observation telescopes is of particular interest to various space agencies and commercial entities. In a new partnership with Surrey Satellite Technology Limited and Airbus Defence and Space, the Surrey Space Centre is developing the capability for autonomous robotic OOA of large aperture segmented telescopes. This paper presents the concept of operation and mission analysis for OOA of a 25m aperture telescope operating in the visible waveband of the electromagnetic spectrum; telescopes of this size will be of much value as it would permit 1m spatial resolution of a location on Earth from geostationary orbit. Further, the conceptual evaluation of robotically assembling 2m and 5m telescopes will be addressed; these missions are envisaged as essential technology demonstration precursors to the 25m imaging system

    Advances in Robotic In-Orbit Assembly of Large Aperture Space Telescopes

    Get PDF
    Modular Large Aperture Space Telescopes (LAST) hold the key to future astronomical missions in search of the origin of the cosmos. Robotics and Autonomous Systems technology would be required to meet the challenges associated with the assembly of such high value infrastructure in orbit. In this paper an End-Over-End walking robot is selected to assemble a 25m LAST. The dynamical model, control architecture and gait pattern of the E-Walker are discussed. The key mission requirements are stated along with the strategies for scheduling the assembly process. A mission concept of operations (ConOps) is proposed for assembling the 25m LAST. Simulation results show the precise trajectory tracking of the EWalker for the chosen mission scenario

    Downsizing an orbital space robot: A dynamic system based evaluation

    Get PDF
    Small space robots have the potential to revolutionise space exploration by facilitating the on-orbit assembly of infrastructure, in shorter time scales, at reduced costs. Their commercial appeal will be further improved if such a system is also capable of performing on-orbit servicing missions, in line with the current drive to limit space debris and prolong the lifetime of satellites already in orbit. Whilst there have been a limited number of successful demonstrations of technologies capable of these on-orbit operations, the systems remain large and bespoke. The recent surge in small satellite technologies is changing the economics of space and in the near future, downsizing a space robot might become be a viable option with a host of benefits. This industry wide shift means some of the technologies for use with a downsized space robot, such as power and communication subsystems, now exist. However, there are still dynamic and control issues that need to be overcome before a downsized space robot can be capable of undertaking useful missions. This paper first outlines these issues, before analyzing the effect of downsizing a system on its operational capability. Therefore presenting the smallest controllable system such that the benefits of a small space robot can be achieved with current technologies. The sizing of the base spacecraft and manipulator are addressed here. The design presented consists of a 3 link, 6 degrees of freedom robotic manipulator mounted on a 12U form factor satellite. The feasibility of this 12U space robot was evaluated in simulation and the in-depth results presented here support the hypothesis that a small space robot is a viable solution for in-orbit operations

    ESA Nanosatellites for D3S (Distributed Space Weather Sensor System)

    Get PDF
    In early 2021, SSTL was selected to be the prime contractor for an ongoing 18 month ESA-funded Phase 0/A study titled “SSA P3-SWE-LIII Nanosatellites for D3S”. The objective of the study is to assess the feasibility of using nanosatellites for future operational space weather monitoring missions as part of ESA's Distributed Space Weather Sensor System (D3S). The Phase 0 study initially involved an analysis of science measurement requirements and space weather instruments as well as an analysis of recent relevant nanosatellite missions and nanosatellite technologies which could be used on future ESA D3S Nanosatellites. This was followed by an initial trade-off of a range of high-level mission architecture concepts, eventually converging down to two mission architecture concepts proposed for further analysis during the remainder of the Phase 0 study. The aim of the first mission architecture concept is to provide near-real time measurements of radiation, thermal plasma and Ionospheric neutrals/plasma, via a constellation of 20x SSTL-21 satellites. The objective of the second mission architecture concept is to provide near-real time measurements of radiation, the Ionosphere and the Thermosphere, via a constellation of 6x 16U SSTL-Cube satellites. ESA selected the second mission architecture concept to take through into the Phase A study. This paper will mainly describe the details of the Phase 0 study, as well as touching on the current status of the Phase A study

    Feasibility Study of Sun Occultation Missions Using Natural Bodies

    No full text
    Understanding the solar corona and its composition can provide new insights regarding the temperature and the magnetic field of the Sun. The light coming from the corona is more than a million of times weaker than the direct light from the Sun; consequently observing the corona is only possible when the Sun is obscured. From ground, total solar eclipses offer a good opportunity to observe the corona; however, these events only occur every 18 months on average, lasting typically only for a few minutes. The goal of this paper is to perform a feasibility analysis of a Sun occultation mission using Earth as an occulter. However, the occultation zone created by the Earth does not follow a Keplerian trajectory, causing satellites placed in this region to quickly drift apart from the target area. To increase the number of revisits while optimizing the propellant budget, we propose optimal trajectories in the Sun-Earth-Spacecraft circular restricted three body problem that account for scientific and engineering constraints such as limited power budget and mission duration. Chemical Propulsion, Electric Propulsion and Solar Sailing configurations are compared in terms of performance and mission feasibility, revealing how 20 hours of corona observations per cycle would be possible with 0.25 km/s with a revisit of the occultation zone every 35 days. In addition to that the solar sail was proven to be an interesting alternative to chemical and low-thrust propulsion systems

    Trajectory design of Earth-enabled Sun occultation missions

    No full text
    Understanding the solar corona and its structure, evolution and composition can provide new insights regarding the processes that control the transport of energy throughout the solar atmosphere and out into the heliosphere. However, the visible emission coming from the corona is more than a million times weaker than the emission from the photosphere, implying that direct corona observations are only possible when the disk of the Sun is fully obscured. In this paper we perform a feasibility study of a Sun occultation mission using the Earth as a natural occulter. The challenge is that the occultation zone created by the Earth does not follow a Keplerian trajectory, causing satellites placed in this region to quickly drift away from eclipse conditions. To increase the number of revisits while optimizing the propellant budget, we propose optimal trajectories in the Sun–Earth-Spacecraft circular restricted three body problem that account for scientific and engineering constraints such as limited power budget and mission duration. Chemical propulsion, electric propulsion and solar sailing configurations are compared in terms of performance and mission feasibility, revealing how 24 h of corona observations would be possible every 39 days with as little as 199 m/s of í µí»¥í µí±\u89. The feasibility of the solar sail approach is hereby demonstrated, making it a challenging engineering alternative to currently available technologies

    Trajectory design of Earth-enabled Sun occultation missions

    No full text
    Understanding the solar corona and its structure, evolution and composition can provide new insights regarding the processes that control the transport of energy throughout the solar atmosphere and out into the heliosphere. However, the visible emission coming from the corona is more than a million times weaker than the emission from the photosphere, implying that direct corona observations are only possible when the disk of the Sun is fully obscured. In this paper we perform a feasibility study of a Sun occultation mission using the Earth as a natural occulter. The challenge is that the occultation zone created by the Earth does not follow a Keplerian trajectory, causing satellites placed in this region to quickly drift away from eclipse conditions. To increase the number of revisits while optimizing the propellant budget, we propose optimal trajectories in the Sun–Earth-Spacecraft circular restricted three body problem that account for scientific and engineering constraints such as limited power budget and mission duration. Chemical propulsion, electric propulsion and solar sailing configurations are compared in terms of performance and mission feasibility, revealing how 24 h of corona observations would be possible every 39 days with as little as 199 m/s of ΔV. The feasibility of the solar sail approach is hereby demonstrated, making it a challenging engineering alternative to currently available technologies
    corecore